Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Oncol ; 17(6): 1129-1147, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36694344

RESUMO

The use of mutation analysis of homologous recombination repair (HRR) genes to estimate PARP-inhibition response may miss a larger proportion of responding patients. Here, we provide preclinical models for castration-resistant prostate cancer (CRPC) that can be used to functionally predict HRR defects. In vitro, CRPC LNCaP sublines revealed an HRR defect and enhanced sensitivity to olaparib and cisplatin due to impaired RAD51 expression and recruitment. Ex vivo-induced castration-resistant tumor slice cultures or tumor slice cultures derived directly from CRPC patients showed increased olaparib- or cisplatin-associated enhancement of residual radiation-induced γH2AX/53BP1 foci. We established patient-derived tumor organoids (PDOs) from CRPC patients. These PDOs are morphologically similar to their primary tumors and genetically clustered with prostate cancer but not with normal prostate or other tumor entities. Using these PDOs, we functionally confirmed the enhanced sensitivity of CRPC patients to olaparib and cisplatin. Moreover, olaparib but not cisplatin significantly decreased the migration rate in CRPC cells. Collectively, we present robust patient-derived preclinical models for CRPC that recapitulate the features of their primary tumors and enable individualized drug screening, allowing translation of treatment sensitivities into tailored clinical therapy recommendations.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Reparo de DNA por Recombinação , Reparo do DNA/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico
3.
Mutat Res Rev Mutat Res ; 787: 108346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34083038

RESUMO

DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.


Assuntos
Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , Instabilidade Genômica/fisiologia , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Dano ao DNA/genética , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos
5.
Cancers (Basel) ; 12(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878283

RESUMO

(1) Background: The combination of the first-generation antiandrogens and radiotherapy (RT) has been studied extensively in the clinical setting of prostate cancer (PCa). Here, we evaluated the potential radiosensitizing effect of the second-generation antiandrogens abiraterone acetate, apalutamide and enzalutamide. (2) Methods: Cell proliferation and agarose-colony forming assay were used to measure the effect on survival. Double strand break repair efficiency was monitored using immunofluorescence staining of γH2AX/53BP1. (3) Results: We report retrospectively a minor benefit for PCa patients received first-generation androgen blockers and RT compared to patients treated with RT alone. Combining either of the second-generation antiandrogens and 2Gy suppressed cell growth and increased doubling time significantly more than 2Gy alone, in both hormone-responsive LNCaP and castration-resistant C4-2B cells. These findings were recapitulated in resistant sub-clones to (i) hormone ablation (LNCaP-abl), (ii) abiraterone acetate (LNCaP-abi), (iii) apalutamide (LNCaP-ARN509), (iv) enzalutamide (C4-2B-ENZA), and in castration-resistant 22-RV1 cells. This radiosensitization effect was not observable using the first-generation antiandrogen bicalutamide. Inhibition of DNA DSB repair was found to contribute to the radiosensitization effect of second-generation antiandrogens, as demonstrated by a significant increase in residual γH2AX and 53BP1 foci numbers at 24h post-IR. DSB repair inhibition was further demonstrated in 22 patient-derived tumor slice cultures treated with abiraterone acetate before ex-vivo irradiation with 2Gy. (4) Conclusion: Together, these data show that second-generation antiandrogens can enhance radiosensitivity in PCa through DSB repair inhibition, regardless of their hormonal status. Translated into clinical practice, our results may help to find additional strategies to improve the effectiveness of RT in localized PCa, paving the way for a clinical trial.

6.
Cancer Lett ; 493: 179-188, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-32891715

RESUMO

Trifluridine/tipiracil (FTD/TPI; marketed as Lonsurf®) has shown clinically relevant activity after fluoropyrimidine failure in colorectal cancer and may thus be of increased efficacy compared with current standard capecitabine chemoradiation. Here we investigated the colorectal cancer cell lines HT29, HCT116, SW48 and Caco-2 to provide a preclinical rationale for FTD/TPI-based chemoradiation treatment. All lines incorporated similar amounts of FTD, irrespective of treatment concentration and duration, then arrested in S phase, showed persistent γH2AX induction and eventually underwent endoreplication, resulting in polyploidy. Clonogenic assays performed for four combined treatment schedules demonstrated additivity for treatments given within 6 h of each other. However, 24 h FTD/TPI treatment prior to irradiation caused 1.6-2.4 fold radiosensitisation. Combined in vivo treatment was well tolerated and caused a marked tumour growth delay, similar to capecitabine radiochemotherapy regimes. Prolonged S phase arrest, persistent γH2AX signalling, endoreplication and polyploidy may contribute to the cytotoxicity of FTD/TPI. The strong radiosensitising effect observed in vitro after prolonged treatment with FTD/TPI and equivalence with capecitabine-based chemoradiation in vivo support a daily fractionated combined regime of FTD/TPI and radiation in rectal cancer treatment. This is now being tested in a phase I/II clinical trial (NCT04177602).


Assuntos
Neoplasias Colorretais/terapia , Histonas/metabolismo , Pirrolidinas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Timina/administração & dosagem , Trifluridina/administração & dosagem , Animais , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quimiorradioterapia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Combinação de Medicamentos , Endorreduplicação , Feminino , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos , Poliploidia , Pirrolidinas/farmacologia , Radiossensibilizantes/farmacologia , Timina/farmacologia , Trifluridina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Trends Cancer ; 6(11): 974-984, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32517958

RESUMO

Molecular-targeted therapies and treatment stratification based on molecular biomarkers have rapidly gained momentum in the therapeutic spectrum for patients with prostate cancer, particularly those with aggressive disease. DNA damage repair (DDR) pathways are commonly impaired in prostate cancer. Recent studies have detailed mechanisms interconnecting the DDR with the androgen receptor (AR) signaling pathway as well as its interplay with the immune response. The prominent role of DDR deficiency in prostate cancer development and treatment response encourages innovative strategies for the detection of DDR deficiency in individual tumors. In this review, we describe recent preclinical and early clinical data on the exploitation of DDR defects as predictive biomarkers and also as molecular therapeutic targets.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/genética , Quimiorradioterapia/métodos , Reparo do DNA/efeitos dos fármacos , Neoplasias da Próstata/genética , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Reparo do DNA/efeitos da radiação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Terapia de Alvo Molecular/métodos , Mutação , Prognóstico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Resultado do Tratamento
8.
Int J Cancer ; 144(7): 1685-1696, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478958

RESUMO

Here, we present a functional assay to detect the repair switch to the alternative PARP1-dependent end joining (PARP1-EJ) pathway and the associated susceptibility to PARPi-mediated radiosensitization in freshly collected tumor samples from prostate cancer (PCa) patients, thereby facilitating the selection of patients who should benefit from combined PARPi plus radiotherapy (RT) treatment. Our optimized ex-vivo approach sustains tumor slices for up to 15 days under culture conditions that maintain proliferation and oxygenation rates, as measured by EdU incorporation and pimonidazole staining, respectively. We present a robust system to analyze DSB repair using, for the first time in an ex vivo tumor slice setting, two DSB-markers simultaneously i.e. γH2AX and 53BP1. A computer-based processing method (i) controls variations in DNA content and slicing on the number of repair foci and (ii) measures the PARPi-mediated enhancement ratio on DSB foci numbers to ensure inter-patient-comparability. We validated this approach using a PC3 xenograft model with its previously described repair switch to PARP1-EJ. More importantly, we show that approximately 30% of the analyzed tumor tissue samples collected from PCa patients display a switch to PARP1-EJ, as indicated by the enhanced number of residual γH2AX/53BP1 foci exclusively after PARPi+RT. Furthermore, normal prostatic tissues show no repair switch to PARP1-EJ, indicating that this repair switch and its associated radiosensitizing effect is tumor-specific. Collectively, we present here a predictive assay for the switch to PARP1-EJ that enables individualization of anti-cancer treatment using a combination of RT and radiosensitizing anticancer agents such as PARPi in PCa.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Neoplasias da Próstata/terapia , Radiossensibilizantes/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Histonas/metabolismo , Humanos , Masculino , Camundongos , Gradação de Tumores , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Radiossensibilizantes/farmacologia , Técnicas de Cultura de Tecidos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
9.
Mutat Res Rev Mutat Res ; 778: 13-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30454679

RESUMO

This review summarises our current understanding of the radiation-induced bystander/systemic effect (RIBE) as well as other types of intercellular reactions induced by malignant tumours, chemotherapy, photodynamic stress and the microbiome. On the basis of striking similarities between these different types of responses RIBE is proposed as a prototype model of a unifying genotoxic stress response system. The early bystander response is initiated by a mitochondria-dependent increase of reactive oxygen species (ROS) and triggers a complex intercellular signalling cascade leading to a sustained increase of cellular DNA damage. The susceptibility to this DNA damage-inducing signal depends on the genetic make-up of the recipient cell population where ATR/ATM- and FA/BRCA-dependent DNA damage response pathways are key players. Long distance bystander/systemic effects observed in in vivo-models are sustained by macrophage-mediated inflammation. Of clinical importance is the potential contribution of bystander DNA damage to an increased risk of malignancies. Defects in DNA damage repair pathways are frequently observed in tumours, which may affect their susceptibility to bystander DNA damage. The potential role for molecular targeted inhibitors in the therapeutic exploitation of bystander responses as well as their differential modulation of targeted and non-targeted effects is also discussed in this context.


Assuntos
Efeito Espectador/efeitos da radiação , Dano ao DNA/efeitos da radiação , DNA/efeitos da radiação , Radiação , Dano ao DNA/genética , Humanos , Macrófagos/efeitos da radiação , Espécies Reativas de Oxigênio/efeitos da radiação
10.
BMC Cancer ; 18(1): 1106, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419865

RESUMO

BACKGROUND: RBM3 expression has been suggested as prognostic marker in several cancer types. The purpose of this study was to assess the prevalence and clinical significance of altered RBM3 expression in esophageal cancer. METHODS: RBM3 protein expression was measured by immunohistochemistry using tissue microarrays containing samples from 359 esophageal adenocarcinoma (EAC) and 254 esophageal squamous cell cancer (ESCC) patients with oncological follow-up data. RESULTS: While nuclear RBM3 expression was always high in benign esophageal epithelium, high RBM3 expression was only detectable in 66.4% of interpretable EACs and 59.3% of ESCCs. Decreased RBM3 expression was linked to a subset of EACs with advanced UICC stage and presence of distant metastasis (P = 0.0031 and P = 0.0024). In ESCC, decreased RBM3 expression was associated with advanced UICC stage, high tumor stage, and positive lymph node status (P = 0.0213, P = 0.0061, and P = 0.0192). However, RBM3 expression was largely unrelated to survival of patients with esophageal cancer (EAC: P = 0.212 and ESCC: P = 0.5992). CONCLUSIONS: In summary, the present study shows that decreased RBM3 expression is associated with unfavourable esophageal cancer phenotype, but not significantly linked to patient prognosis.


Assuntos
Biomarcadores Tumorais , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Neoplasias Esofágicas/mortalidade , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Avaliação de Resultados da Assistência ao Paciente , Fenótipo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Mol Cancer Res ; 16(3): 496-507, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29330294

RESUMO

Clinical options for systemic therapy of neuroendocrine tumors (NET) are limited. Development of new drugs requires suitable representative in vitro and in vivo model systems. So far, the unavailability of a human model with a well-differentiated phenotype and typical growth characteristics has impaired preclinical research in NET. Herein, we establish and characterize a lymph node-derived cell line (NT-3) from a male patient with well-differentiated pancreatic NET. Neuroendocrine differentiation and tumor biology was compared with existing NET cell lines BON and QGP-1. In vivo growth was assessed in a xenograft mouse model. The neuroendocrine identity of NT-3 was verified by expression of multiple NET-specific markers, which were highly expressed in NT-3 compared with BON and QGP-1. In addition, NT-3 expressed and secreted insulin. Until now, this well-differentiated phenotype is stable since 58 passages. The proliferative labeling index, measured by Ki-67, of 14.6% ± 1.0% in NT-3 is akin to the original tumor (15%-20%), and was lower than in BON (80.6% ± 3.3%) and QGP-1 (82.6% ± 1.0%). NT-3 highly expressed somatostatin receptors (SSTRs: 1, 2, 3, and 5). Upon subcutaneous transplantation of NT-3 cells, recipient mice developed tumors with an efficient tumor take rate (94%) and growth rate (139% ± 13%) by 4 weeks. Importantly, morphology and neuroendocrine marker expression of xenograft tumors resembled the original human tumor.Implications: High expression of somatostatin receptors and a well-differentiated phenotype as well as a slow growth rate qualify the new cell line as a relevant model to study neuroendocrine tumor biology and to develop new tumor treatments. Mol Cancer Res; 16(3); 496-507. ©2018 AACR.


Assuntos
Modelos Animais de Doenças , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Genotipagem/métodos , Xenoenxertos , Humanos , Masculino , Camundongos , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética
12.
Tumour Biol ; 39(10): 1010428317712166, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29022485

RESUMO

Microtubules are multifunctional cytoskeletal proteins that are involved in crucial cellular roles including maintenance of cell shape, intracellular transport, meiosis, and mitosis. Class III beta-tubulin (ßIII-tubulin, also known as TUBB3) is a microtubule protein, normally expressed in cells of neuronal origin. Its expression was also reported in various other tumor types, such as several types of lung cancer, ovarian cancer, and esophageal cancer. TUBB3 is of clinical relevance as overexpression has been linked to poor response to microtubule-targeting anti-cancer drugs such as taxanes. To systematically investigate the epidemiology of TUBB3 expression in normal and neoplastic tissues, we used tissue microarrays for analyzing the immunohistochemically detectable expression of TUBB3 in 3911 tissue samples from 100 different tumor categories and 76 different normal tissue types. At least 1 tumor with weak expression could be found in 93 of 100 (93%) different tumor types, and all these 93 entities also had at least 1 tumor with strong positivity. In normal tissues, a particularly strong expression was found in neurons of the brain, endothelium of blood vessels, fibroblasts, spermatogenic cells, stroma cells, endocrine cells, and acidophilic cells of the pituitary gland. In tumors, strong TUBB3 expression was most frequently found in various brain tumors (85%-100%), lung cancer (35%-80%), pancreatic adenocarcinoma (50%), renal cell carcinoma (15%-80%), and malignant melanoma (77%). In summary, these results identify a broad spectrum of cancers that can at least sporadically express TUBB3. Testing of TUBB3 in cancer types eligible for taxane-based therapies could be helpful to identify patients who might best benefit from this treatment.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Tubulina (Proteína)/genética , Biomarcadores Tumorais/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/classificação , Neoplasias/patologia , Taxoides/uso terapêutico , Tubulina (Proteína)/biossíntese
13.
Prostate ; 77(15): 1528-1538, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28929505

RESUMO

BACKGROUND: Glyoxalase 1 (GLO1) is an enzyme involved in removal of toxic byproducts accumulating during glycolysis from the cell. GLO1 is up regulated in many cancer types but its role in prostate cancer is largely unknown. METHODS: Here, we employed GLO1 immunohistochemistry on a tissue microarray including 11 152 tumors and an attached clinical and molecular database. RESULTS: Normal prostate epithelium was negative for GLO1, whereas 2059 (27.3%) of 7552 interpretable cancers showed cytoplasmic GLO1 staining, which was considered weak in 8.8%, moderate in 12.5%, and strong in 6.1% of tumors. Up regulation of GLO1 was significantly linked to high original Gleason grade, advanced pathological tumor stage and positive lymph node status (P < 0.0001 each). Comparison of GLO1 staining with several common genomic alterations of prostate cancers revealed a strong link between GLO1 up regulation and TMPRSS2:ERG fusion (P < 0.0001) and an ERG-independent association with PTEN deletion (P < 0.0001). GLO1 up regulation was strongly linked to early biochemical recurrence in univariate analysis (P < 0.0001) and predicted poor prognosis independent from most (except from nodal stage) established prognostic parameters in multivariate analysis (P ≤ 0.03). CONCLUSIONS: GLO1 upregulation is linked to aggressive prostate cancers characterized by ERG fusion and PTEN deletion. The strong and independent prognostic value makes it a promising candidate for routine diagnostic applications either alone or in combination with other markers.


Assuntos
Lactoilglutationa Liase/biossíntese , Neoplasias da Próstata/enzimologia , Idoso , Biomarcadores Tumorais/biossíntese , Humanos , Imuno-Histoquímica , Calicreínas/metabolismo , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/enzimologia , Prognóstico , Antígeno Prostático Específico/metabolismo , Análise Serial de Tecidos
14.
BMC Cancer ; 17(1): 504, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747165

RESUMO

BACKGROUND: Animal model experiments have suggested a role of the DNA repair protein ERCC1 (Excision Repair Cross-Complementation Group 1) in prostate cancer progression. METHODS: To better understand the impact of ERCC1 protein expression in human prostate cancer, a preexisting tissue microarray (TMA) containing more than 12,000 prostate cancer specimens was analyzed by immunohistochemistry and data were compared with tumor phenotype, PSA recurrence and several of the most common genomic alterations (TMPRSS2:ERG fusions: deletions of PTEN, 6q, 5q, 3p). RESULTS: ERCC1 staining was seen in 64.7% of 10,436 interpretable tissues and was considered weak in 37.1%, moderate in 22.6% and strong in 5% of tumors. High-level ERCC1 staining was linked to advanced pT stage, high Gleason grade, positive lymph nodes, high pre-operative serum PSA, and positive surgical margin status (p < 0.0001 each). High ERCC1 expression was strongly associated with an elevated risk of PSA recurrence (p < 0.0001). This was independent of established prognostic features. A subgroup analysis of cancers defined by comparable quantitative Gleason grades revealed that the prognostic impact was mostly driven by low-grade tumors with a Gleason 3 + 3 or 3 + 4 (Gleason 4: ≤5%). High ERCC1 expression was strongly associated with the presence of genomic alterations and expression levels increased with the number of deletions present in the tumor. These latter data suggest a functional relationship of ERCC1 expression with genomic instability. CONCLUSION: The results of our study demonstrate that expression of ERCC1 - a potential surrogate for genomic instability - is an independent prognostic marker in prostate cancer with particular importance in low-grade tumors.


Assuntos
Aberrações Cromossômicas , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Neoplasias da Próstata/metabolismo , Idoso , Proliferação de Células , Progressão da Doença , Intervalo Livre de Doença , Instabilidade Genômica , Humanos , Calicreínas/sangue , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Gradação de Tumores , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Modelos de Riscos Proporcionais , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia
15.
Ann Transl Med ; 4(24): 523, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28151534

RESUMO

Despite considerable progress in (I) our understanding of the aetiopathology of head and neck cancer and (II) the precise delivery of radiotherapy, long-term survival rates for many patients with head and neck cancer remain disappointingly low. Over the past years, gold nanoparticles (NP) have emerged as promising radiation dose enhancers. In a recent study published in Nanoscale, Popovtzer et al. have used gold NP coated with an antibody against the epidermal growth factor receptor (EGFR) in an attempt to enhance radiation-induced tumour cell killing in a head and neck cancer xenograft model. They report a significant impact of the combined treatment with radiation and gold NP on tumour growth and suggest an involvement of apoptosis, inhibition of angiogenesis and diminished tissue repair. In this perspective, we illustrate the underlying radiobiophysical concepts and discuss some of the challenges associated with this and related nanoparticle-radiotherapy studies from a physics, chemistry, biology and therapy angle. We conclude that strong interdisciplinary collaborations spanning all these areas are crucially important to proceed towards effective cancer treatment with gold NP "from bench to bedside".

16.
PLoS One ; 10(11): e0141867, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555375

RESUMO

BACKGROUND AND AIMS: Amplification of the fibroblast growth factor receptor 1 (FGFR1) is believed to predict response to multi-kinase inhibitors targeting FGFR1. Esophageal cancer is an aggressive disease, for which novel targeted therapies are highly warranted. METHODS: This study was designed to investigate the prevalence and clinical significance of FGFR1 amplification in a tissue microarray containing 346 adenocarcinomas and 254 squamous cell carcinomas of the esophagus, using dual-labeling fluorescence in situ hybridization (FISH) analysis. RESULTS: FGFR1 amplification, defined as a ratio of FGFR1:centromere 8 copy numbers ≥ 2.0, was more frequently seen in squamous cell carcinoma (8.9% of 202 interpretable cases) than in adenocarcinoma (1.6% of 308; p<0.0001). There was no association between FGFR1 amplification and tumor phenotype or clinical outcome. To study potential heterogeneity of FGFR1 amplification, all available tumor blocks from 23 FGFR1 amplified tumors were analyzed on conventional large sections. This analysis revealed complete homogeneity of FGFR1 amplification in 20 (86.9%) primary tumors and in all available lymph node metastases. Remarkably, FGFR1 amplification was also seen in dysplasia adjacent to tumor in 6 of 9 patients with FGFR1 amplified primary cancers. CONCLUSIONS: In conclusion, FGFR1 amplification occurs in a relevant subgroup of carcinomas of the esophagus and may play a particular role for development of squamous cell cancers. The high homogeneity of FGFR1 amplification suggests that patients with FGFR1 amplified esophageal cancers may particularly benefit from anti-FGFR1 therapies and prompt for clinical studies in this tumor type.


Assuntos
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Amplificação de Genes/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Feminino , Humanos , Hibridização in Situ Fluorescente , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Prognóstico
17.
Environ Mol Mutagen ; 56(6): 491-504, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25773265

RESUMO

The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double-strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double-strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted.


Assuntos
Quebras de DNA de Cadeia Dupla , Dano ao DNA/fisiologia , Testes de Mutagenicidade/métodos , Animais , Biomarcadores/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA , Histonas/metabolismo , Humanos , Monitoramento de Radiação/métodos , Radiação Ionizante
18.
Cancer Lett ; 356(2 Pt B): 454-61, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25304378

RESUMO

Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.


Assuntos
Proteína BRCA1/metabolismo , Neoplasias Encefálicas/patologia , Efeito Espectador/genética , Dano ao DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Glioma/patologia , Proteínas Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Efeito Espectador/efeitos da radiação , Proliferação de Células/efeitos da radiação , Quinase 1 do Ponto de Checagem , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Replicação do DNA/genética , Replicação do DNA/efeitos da radiação , Citometria de Fluxo , Glioma/genética , Glioma/metabolismo , Glioma/radioterapia , Humanos , Técnicas Imunoenzimáticas , Mutação/genética , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Células Tumorais Cultivadas , Raios X
19.
Strahlenther Onkol ; 191(3): 248-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25245467

RESUMO

INTRODUCTION: Radioprotective agents are of interest for application in radiotherapy for cancer and in public health medicine in the context of accidental radiation exposure. Methylproamine is the lead compound of a class of radioprotectors which act as DNA binding anti-oxidants, enabling the repair of transient radiation-induced oxidative DNA lesions. This study tested methylproamine for the radioprotection of both directly targeted and bystander cells. METHODS: T98G glioma cells were treated with 15 µM methylproamine and exposed to (137)Cs γ-ray/X-ray irradiation and He(2+) microbeam irradiation. Radioprotection of directly targeted cells and bystander cells was measured by clonogenic survival or γH2AX assay. RESULTS: Radioprotection of directly targeted T98G cells by methylproamine was observed for (137)Cs γ-rays and X-rays but not for He(2+) charged particle irradiation. The effect of methylproamine on the bystander cell population was tested for both X-ray irradiation and He(2+) ion microbeam irradiation. The X-ray bystander experiments were carried out by medium transfer from irradiated to non-irradiated cultures and three experimental designs were tested. Radioprotection was only observed when recipient cells were pretreated with the drug prior to exposure to the conditioned medium. In microbeam bystander experiments targeted and nontargeted cells were co-cultured with continuous methylproamine treatment during irradiation and postradiation incubation; radioprotection of bystander cells was observed. DISCUSSION AND CONCLUSION: Methylproamine protected targeted cells from DNA damage caused by γ-ray or X-ray radiation but not He(2+) ion radiation. Protection of bystander cells was independent of the type of radiation which the donor population received.


Assuntos
Benzimidazóis/farmacologia , Efeito Espectador , Sobrevivência Celular/efeitos da radiação , Protetores contra Radiação/farmacologia , Linhagem Celular Tumoral , Humanos
20.
Methods Mol Biol ; 704: 17-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21161626

RESUMO

A number of studies have demonstrated that nitric oxide enhances radiosensitivity of anoxic and hypoxic cells in vitro and in vivo, and some evidence points to a role for DNA damage and repair in this phenomenon. We have recently observed that nitric oxide enhances the formation of DNA single- and double-strand breaks following ionising irradiation, measured by the alkaline comet assay and immunofluorescence microscopy for γ-H2AXγ-H2AX.


Assuntos
Quebras de DNA/efeitos dos fármacos , Quebras de DNA/efeitos da radiação , Histonas/metabolismo , Óxido Nítrico/farmacologia , Animais , Células Cultivadas , Ensaio Cometa , Cricetinae , Cricetulus , Humanos , Microscopia de Fluorescência , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...